Rotation of X-ray polarization in the glitches of a silicon crystal monochromator
نویسندگان
چکیده
EXAFS studies on dilute samples are usually carried out by collecting the fluorescence yield using a large-area multi-element detector. This method is susceptible to the 'glitches' produced by all single-crystal monochromators. Glitches are sharp dips or spikes in the diffracted intensity at specific crystal orientations. If incorrectly compensated, they degrade the spectroscopic data. Normalization of the fluorescence signal by the incident flux alone is sometimes insufficient to compensate for the glitches. Measurements performed at the state-of-the-art wiggler beamline I20-scanning at Diamond Light Source have shown that the glitches alter the spatial distribution of the sample's quasi-elastic X-ray scattering. Because glitches result from additional Bragg reflections, multiple-beam dynamical diffraction theory is necessary to understand their effects. Here, the glitches of the Si(111) four-bounce monochromator of I20-scanning just above the Ni K edge are associated with their Bragg reflections. A fitting procedure that treats coherent and Compton scattering is developed and applied to a sample of an extremely dilute (100 micromolal) aqueous solution of Ni(NO3)2. The depolarization of the wiggler X-ray beam out of the electron orbit is modeled. The fits achieve good agreement with the sample's quasi-elastic scattering with just a few parameters. The X-ray polarization is rotated up to ±4.3° within the glitches, as predicted by dynamical diffraction. These results will help users normalize EXAFS data at glitches.
منابع مشابه
Performance of the Double Multilayer Monochromator
A tunable, double multilayer x-ray monochromator has recently been implemented on the National Synchrotron Light Source (NSLS) X25 wiggler beam line. It is based on a parallel pair of tungsten-boron-carbide multilayer films grown on silicon substrates and purchased from Osmic, Inc. of Troy, Michigan, USA. It acts as an optional alternative to the conventional double silicon crystal monochromato...
متن کاملDiamond Monochromator for High Heat Flux Synchrotron X-ray Beams
2 Single crystal silicon has been the material of choice for x-ray monochromators for the past several decades. However, the need for suitable monochromators to handle the high heat load of the next generation synchrotron x-ray beams on the one hand and the rapid and on-going advances in synthetic diamond technology on the other make a compelling case for the consideration of a diamond monochro...
متن کاملPhotonic Crystal-Based Polarization Converter for Optical Communication Applications
A photonic crystal-based TE to TM polarization converter for integrated optical communication is proposed in this paper. The photonic crystal consists of air circular-holes in slab waveguide. The radius of holes are determined to be 291nm having lattice constant of 640nm using the gap map and band diagram. The polarization converter is composed of an InGaAsP triangular-shaped waveguide on SiO2 ...
متن کاملDiamond X-ray Rocking Curve and Topograph Measurements at CHESS
X-ray rocking curve and topograph measurements were carried out at CHESS in Cornell University in November 2006. The purpose of this experiment was to check if the X-ray facility at CHESS is suitable to be used for GlueX in assessing diamond crystal quality and investigating radiation damage and surface deformation induced by milling. After modifying the C1 beam line by using an asymmetry silic...
متن کاملA simultaneous multiple angle-wavelength dispersive X-ray reflectometer using a bent-twisted polychromator crystal
An X-ray reflectometer has been developed, which can simultaneously measure the whole specular X-ray reflectivity curve with no need for rotation of the sample, detector or monochromator crystal during the measurement. A bent-twisted crystal polychromator is used to realise a convergent X-ray beam which has continuously varying energy E (wavelength λ) and glancing angle α to the sample surface ...
متن کامل